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POWER SERIES WITH RESTRICTED COEFFICIENTS 
AND A ROOT ON A GIVEN RAY 

FRANCK BEAUCOUP, PETER BORWEIN, DAVID W. BOYD, AND 
CHRISTOPHER PINNER 

ABSTRACT. We consider bounds on the smallest possible root with a specified 
argument X of a power series f(z) = 1 + EZ 1aizi with coefficients ai in the 
interval [-g, g]. We describe the form that the extremal power series must 
take and hence give an algorithm for computing the optimal root when 7/27r 
is rational. When g > 2V2- + 3 we show that the smallest disc containing 
two roots has radius (Vg- + 1)-I coinciding with the smallest double real root 
possible for such a series. It is clear from our computations that the behaviour 
is more complicated for smaller g. We give a similar procedure for computing 
the smallest circle with a real root and a pair of conjugate roots of a given 
argument. We conclude by briefly discussing variants of the beta-numbers 
(where the defining integer sequence is generated by taking the nearest integer 
rather than the integer part). We show that the conijugates, A, of these pseudo- 
beta-numbers either lie inside the unit circle or their reciprocals must be roots 
of [-1/2,1/2) power series; in particular we obtain the sharp inequality JAI < 
3/2. 

1. INTRODUCTION 

We are interested in studying the shape of the zero-free region for power series 
with restricted coefficients by finding the smallest root of such a power series that 
can lie along a specified ray. 

Given a g > 0 we let .Fg denote the set of [-g, g] power series 

F {f (z) 1+ aix ai C [-g, g] 

For a given argument 0 we let 6/9 (0) denote the set of positive real numbers a such 
that aeiX is a root of a power series f, in Fg, and define r9 (0) to be the infimumn 
of this set. Because of symmetry (u X Lu, +iU), we can restrict our attention to 0 
in [0, wr/2]. For a general (not necessarily symmetrical) interval I we similarly use 
ri(4) to denote the smallest root with argument q possible for a power series with 
lead coefficient one and remaining coefficients ai in I. 

Solomyak [3] has extensively studied the corresponding problem for the intervals 
I = [0,1] in connection with conjugates of beta-numbers; in several places we shall 
refer the reader to his excellent manuscript when the proof of the corresponding 
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result requires only minor adaptations. We should remark that the related problem 
of zero-free regions for integer polynomials has been considered by Odlyzko and 
Poonen [2] in the case of {0, 1} coefficients and by Yamamoto [4] for norm-bounded 
polynomials; theiregions they obtain clearly having a different, more fractal looking, 
appearance than ours. 

We first note the following sharp bounds on r9(q): 

Theorem 1. For all g > 0 and 0 in [0, wr/2] 

1 1r 

with equality achieved for b = 0 and 7r/2 respectively. 

Of course the angle 0 = 0 should really be regarded quite separately from the 
remaining arguments (0, wr/2] (since we are dealing with real power series and van- 
ishing at a u thus entails vanishing at u- it is readily seen that r9 (0) tends to a real 
double root and not r9 (0)). Hence omitting zero we might hope to improve. the 
lower bound slightly. For g > 1 this is certainly true: 

Theorem 2. For all 0 in (0, wr) 

rg X > 
Afig + I- 

Forg > 2vX+3 

lim r9(X) 

where ( + 1)-i is the smallest double root of a power series in Fg; namely 
oo 

f (x) = I - (2vl--+ l)x + g Yxi 
i=2 

More precisely, for g > 2v2 + 3 and 0 in (0, ir), r9(g) is the positive real root of 
00 sin(i- 1)q = 

i2 
sinq z2O 

For g < 2vX2 + 3 the location of the smallest value r9 (q) (and hence the radius of 
the smallest disc containing two roots of a power series in .Fg) will generally occur 
away from zero and seems much harder to determine. 

A standard compactness argument shows that the infimum is always achieved. 
We next show that the series for the minimal root must take a very specific form. 

Theorem 3. For a given g > 0 and argument 0, there exists a unique v3 in 6g (q) 
such that, for some 0 in (0, wr/2), the coefficients of the corresponding power series 
1 + ' 1 bjxi in Fg satisfy 

bj- 9 if jo-j 0 C (O, 7r) (mod 2wr), 
-g if j -0 C (-7r,O) (mod 2wr). 

Moreover 
1= r9(g) 

and the coefficients of any additional power series fo in .Fg with a root at fe' must 
be of this form (taking the same 0). 
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Notice that if 0/2wr is irrational, then the corresponding series for r9(q)e'O in 
%Fg is certainly unique (with at most one coefficient, namely aj where J must 
satisfy Jo = 0 (mod ir), not taking the value of an end point Lg). If q/2wr = t/s 
is rational, then (by the discreteness of the arguments nr0) we can assume that 
0 = Jo (mod wr) for some J and the series will not be unique unless all the remaining 
aj+js aj = Lg (and aJ+s/2+js -aJ if k is even). 

However in the rational case q$ 2wrt/s, setting 1 = s if s is odd and s/2 if s is 
even, we observe that by setting 

A.:= (z aj+isrs) (1- r), j =1,... s, s odd, 

A. := ajisris - ai+s/2+isris+sl2 (1 + r,/2), j = 1, ... s/2, s even, 
i=o 

we can replace any optimal series 1 + E aix2 by a series 1 + E Aix' in Fg where 
the Ai are periodic with period s and Aj+s/2 = -Aj if s is even. Notice that in the 
rational case we can therefore (on multiplying the series by (1 + (-1)sxl)) replace 
the infinite series by finite polynomials of the form 

1-1 

(1) p(x) := 1 + (-1)s(g + 1)x' + ZAixi. 
i=l 

Henceforth we shall regard the periodic extremal series as being the canonical 
form when 0/2wr is rational, and will use Aj(0) to denote its coefficients, and the 
coefficients of the unique optimal series when 0/2wr is irrational. 

We are often forced to single out a set of awkward angles q; 

Ug := {0 : Aj(0) = Lg for all j}, 

including those q with rational 0/2wr and a unique series. Although for a given g 
it is difficult to decide whether there are rational 0/2wr with 0 in Ug, they certainly 
can occur. For example when g = X/'3 the point 7r/4 is in U. with unique extremal 
sequence 1 - v(x - X2 - X3- x4)/(I + X4); indeed it appears from Figure 3 (see 
the end of the paper) that r<V(3/4) = - 1) /2 may well be the minimum. 

For q not in Ug we shall define 

J(q$) := min{j : Aj(0) 7 Lg}. 

For q in Ug we can similarly define J(q) to be the smallest j such that 0 
jq(mod 2wr) can be taken as the argument of the dividing line in Theorem 3; where 
J(Q) is potentially oc for some irrationals. 

2. OTHER INTERVALS AND POLYNOMIAL VERSIONS 

Although we have concentrated upon fixed symmetric intervals many of the 
results can be easily extended to a broader class of power series (with varying 
intervals) and to polynomials (constructed from a given set of exponents): 

Given a set S of exponents Es = {O < ni < n2 < ... } and intervals 1i = [ui, vi] 
each containing zero, we consider the power series 

.FS : = I=1 + E: a-z ni : ai C [ui Vi}I 

ni CE?s 
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the set Js (0) of positive real a for which there is a root aeiX of a power series g,, in 
.Fs and define rs(q) to be the infimum of this set. Solomyak [3] considers in detail 
the case when the intervals are all [0,1]. We prove the following generalisation 
of Theorem 3, in particular recovering Solomyak's Structure Theorem 3.3 for the 
intervals [0, 1]: 

Theorem 4. If Jss(0) #7 0, then there exists a unique 3 in Js(q) for which there 
is a 0 in (0, 7r/2) such that the coefficients of the corresponding power series 1 + 

OZ-1 bjxThi in .Fs satisfy 

bj Vi if nj4-0 C (O, wr) (mod 2wr), 
Ui if njq-0 C (-7r,O) (mod 2wr). 

Moreover 
I3=rs(q) 

and any additional power series fo in Fs with a root at 3eio must be of this form. 

3. THE COMPUTATIONS 

When q/2wr = t/s is rational, 0 < 0 < wr, Theorem 3 and the polynomial form 
(1) provide a method for computing r9(q). Appealing to Theorem 4 we actually 
give here the algorithm to find r1(q), the smallest root with argument q0 of a 
power series having lead coefficient one and remaining coefficients in I, for any 
fixed interval I := [m - g, m + g] containing zero. In this more general setting 
we can still assume that the coefficients of the extremal power series are periodic, 
ai+js = Ai, with (Aj - m) =m-(Aj+s2-M) if s is even. 

For a trial 1 < J < 1 one assigns coefficients 

Ai := m -g sign si(J (. i?)) 1 < i<I-1, i-7& J, 

and, using the vanishing of the real and imaginary parts at re'0 to eliminate Ai 
(as in the proof of Theorem 4), solves the resulting equation 

(I + g -m) + E: ( 1+(151 ) - 9 | i(-) )X'i = ?l 
i=O ( + (_)SX9 sin Jo (1- x1) sin Jo 

for a root 0 < r < 1; increasing J until one reaches an r that yields 

Am(2 - r1)r1 ( si s risign sin(J-ii)b sini0) 
(1-2r cos q + r2) sin Jo i = 1 sin Jo sin Jo 

with lAj-ml < g, and hence r = rj(q). 
The graphs at the end of the paper illustrate the results for the symmetrical 

intervals m = 0, g = 1/2,1,\,32X'2 + 3 and the corresponding values of J(q) and 
Aj(?) for g = 1. For g = 1 the smallest value we encountered was ri (2037r/684) = 
.63560642..., the precise minimum (giving the radius of the smallest disc contain- 
ing two roots of a [-1,1] power series) appearing to lie between 2037r/684 and 
2497r/839. Figures 7 and 8 show rI(0) for the one-sided intervals I = [0, 1] and 
[-1,0 ]. For [0,1] the smallest value we found was ri(229gr/310) = .73295789... (the 
minimum apparently lying between 2297r/310 and 3767r/509). For [-1,0] the min- 
imum appears to be ri(27r/3) = (1/2)1/3 corresponding to the series 1 - _ ? x3J 
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(this latter value is not the radius of the smallest disc with two roots, 1 - X 2j 

giving (1/2)1/2, but is potentially the smallest with three roots). 

4. SOME GENERAL PROPERTIES 

Although r9(0) is necessarily a discontinuity we do otherwise have continuity in 
the value of r9 (0). The curve however is certainly not smooth, with maxima at all 
the 0 in wrQ \Ug. We state several such properties below (the proofs of Proposition 
1 are readily reconstructed from the corresponding [0,1] results of Solomyak [3] and 
hence are omitted): 

Proposition 1. (i) The function 0 -* r9g() is continuous on (0, 7r). 
(ii) If b is in wrQ \ Ug, then r9(q) is not smooth, more precisely there is a sector 

with vertex r9(0)e'O and angle greater than wr outside of the curve. 
(iii) If q/r is irrational, not in Ug, and not a Liouville number, then the curve 

has a tangent at the point r9(0)e . 

Away from Ug the behaviour of J(q) is quite predictable: 

Proposition 2. (i) If 0 is not in Ug and 0/2wr is irrational, then for sufficiently 
small 6 =(q,g) > 0 

J(0) = J(0) Vo c ( - 6,X + 8). 

(ii) If 0/2wr t/s is rational, set 1 = s or s/2 as s is odd or even, and define (if 
possible) non-negative integers n, m such that 

sign(sinJ(0)4)AJ(?,)(4) c g (I - 2r9()ml, 1 - 2r9 ) (m?l)l) 

or 

-sign(sin J( ))AJ(?)(0) C g (I - 2r9 (q)n, 1 - 2rg (X)(n+1)1) 

Then for a suitably small 6 = 8(q, g) > 0 

J( _) f J(q)+ml VO (X,0+ 6), 
( ) J(q) +l VO C (q$-8 q). 

Conversely, suppose that there is an interval (4, q + 8) (respectively (4-6, q$)) 
with J(O) = J constant on the interval and set 

A+ = lim AJ(X) (respectively A- = lim AJi(X)). 
-OX+ 0-OX 

(a) If 4/2wr is irrational, then J(q) = J and AJ() = A+ (respectively A-). 
(b) If 0/2wr is rational (with 1 = s or s/2 as s is odd or even), then J(q) = J1 < 1 

where J=Ji+tl and 

Ai1 (4) = A+rtl(1 - r1) - g sign(sinJi4)(I - rtl - r(t+1)l) 

(respectively 

AJ1 (X) = A rtl (1 - r) + g sign(sin J0) (1 - rtl - r(t+1)1)) 

where r = r9 (0) = lim r9 (0). 
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Notice that (even if the value of J(0) remains constant in an interval about q) 
the value of Aj(0)(0) is discontinuous at rational 0; observe also that the value 
of J(0) away from elements in Ug remains constant around rationals if Ai(q) is 
in (-g(1 - 2rg(q)'),g(1 - 2r9(q)')) (i.e. far enough away from the endpoint Lg 
to absorb the necessary discontinuity). These discontinuities at the rationals are 
clearly visible in Figure 5 together with the necessary jump from J = 1 to 4 at 7r/3. 

Theorem 2 relies on the fact that J(q) = 1 for all q > 0 if g > 2v2 + 3. For 
9 < 2VX_+3 we must certainly have at least two different values of J (since J(Q) > 2 
as 0 0 O and J(q) = 1 as 0 w 7r/2); in fact it seems plausible that J is always 
unbounded when g < 2/2 + 3. 

Notice that for rational q/2wr in addition to elements in Ug we are forced also 
to avoid X with Aj(q) = (1 - 2r9()'ln) for a non-negative integer n (for which 
potentially limo,O? Aj(0) (0) = Lg). Similarly observe that if X is in Ug and 4/2wr 
rational, then 0 cannot be the end point of interval with constant J (since (b) forces 

Ail (X) 1< g). 

5. THREE ROOTS ON A CIRCLE 

For a given argument q Theorem 3 gave us a way to characterize the radius r9 (q) 
of the smallest circle containing two roots re ,re-,O. One natural extension would 
to be to ask for the radius of the smallest circle rg(4) containing the three roots 
r, rei, re-'O. In this case there is a Structure Theorem resembling Theorem 3: 

Theorem 5. For a given g > 0 and angle q in (0, wr) there is a unique 3 > 0 with 
f, 3ev, f3e-i all roots of a power series 

00 

fo(x) =- +Zbix' 
i=l 

in F9 such that for two arguments 01 < 02 the coefficients of fo satisfy 

{ -g if j4 C (02-27r, 01) (mod 2wr), 
bj := 

g if j C (01, 02) (mod 2wr). 

Moreover 

and any series fo must be of this form. 

It is not hard to see that a Theorem 4 style generalisation holds for power series 
with coefficients bj lying in varying intervals [ui, vi] containing zero. 

Now in the rational case 0/2ir = t/s, s > 3, we can once again reduce to a 
periodic series, hence reduce to a polynomial 

s-1 

p(x, q) 1-(1+ g)xs + Aixi, 
i=l1 

and again obtain an algorithm for computing ig (0): 
For a trial pair of integers 1 < I < J < s one solves the polynomial 

si sin (I - j) sin 2(JXj)q 
sin Io siJ 

j=i 2 2$inq 
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(that is the polynomial that would result if Io and Jq gave the correct 01 and 02 

(mod 27r) and we eliminated A,, AJ from the equations p(r, 0) =, Oj(reio, q) = 0) 
for the real root x = r (O <: r < 1), changing I, J until one reaches a pair that, with 

-gsg sin(' (1- j)q$) sin(' (J - j)c$) Aj := =-g sign (sn(2 ( -?0 m(2 ( -i)0)) j J, sin I sin 2 JO 

yields "missing coefficients" IA,1, IAiI < g, where 

A1 sin#X-sin0Ok 1(+)rs_)rl - - 

j 
j 

. 
sin Jo -sin I j 1 sA n Jo-sin IX 

A, = si-XsnO((g + I)rs - )r-J - E Aj Sl f-li rj- 
sin JoX- sin 10 j=1 sin JoX- sin 1= 

j#4I,J 

sin 1 
_ 

____- siJ 
s-1 sin Ik - sinjq j J 

AinI=b-sin g + 1)rs - 1)r- - E3 Aj rj 
sinlq$ - sin#Jo j sin hi5 - sin Jo$ 

when sin(Iq) -7 sin(Jq) (if sin(Iq) = sin(Jq) one simply replaces the sines by 
cosines in the formulae for A, and Ai). 

Figure 9 shows ig(q) for g = 1, Figure 10 showing the successful values of I, J 
against X in this case. The smallest value we encountered was rl (2217r/497) 
.71615109..., the minimum lying between X = 47r/9 and 2217r/497. 

Clearly power series with coefficients in totally positive intervals (such as [0,1]) 
can have no positive real roots. Similarly for totally negative intervals it becomes 
uninteresting to ask for roots r and re'O with r > 0. For example a power series 
with lead coefficient one and remaining coefficients in [-1,0] cannot have such a 
pair of roots when 0/2wr is irrational, and when q/2r = t/s is rational the smallest 
r is simply (1/2)1/s with extremal series 1 - _-1 xsj (since the equations resulting 
from vanishing at r and re'O clearly require cos(nq) = 1 for any non-zero coefficients 
an in the series). Hence for a general interval I it is perhaps more natural to 
define ri(4) to be the smallest r such that there is a power series with coefficients 
in I and three roots -r, -rei, -re-'O. We give the corresponding curves for 
I = [0, 1] and [-1, O] in Figures 11 and 12. The smallest value found for [0, 1] was 
fi(77r/58) = .79794300..., the minimum lying between 7wr/58 and 108wr/895. For 
[-1, 0] the minimum appears to be ri(r/2) = (1/2)1/4 from 1 - E_ 1 x4j. 

Unfortunately it is no longer clear that this approach necessarily leads us to the 
smallest disc containing three roots or what is the correct extension of this to four 
or more roots. Concerning Rg (k), the radius of the smallest disc containing k roots 
of a [-g, g] power series, one may obtain the following bounds 

I~ + -12< Rg9(k) < 1 
( k) (g2k?+1)l/2k g (g+1)l/k' 

the lower bound a consequence of Jensen's Theorem (see [1]), the upper bound 
arising from the power series 1 - 1 xk. 

Alternatively one could ask for r9 (4, k) the smallest value of a such that aeio is 
a k-fold root of a series in Fg. In [1] we gave a procedure for computing r9 (k, 0) and 
it is clear that r9 (k, I$) > rg(k, 0). It is also easy to see that rg(k, wr/2) = /rg(k, 0) 
but it is not clear whether wr/2 remains the worst argument as when k = 1. 
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6. PSEUDO-BETA-NUMBERS, AN APPLICATION 

For any real 6 we can define a variant of the integer part function 

[x := zn (x - (1 -6),x+6] 

and for a real 0 and 6 a mapping To(x, 6): R -- [-6,1 -6) by 

To(x,6): x Ox - [Oxi]. 

For a given 6 and 0 > 1 we can define a sequence of integers d = d(O, 8) -(di) I 
by 

dj [OTi-1(1,6)]. 

Writing 
k 

0 = ZdiO-(i 1) + TOk(1,6)0-(k-1) 
i=l 

this sequence can be thought of as giving us a "6-0-expansion of 1": 

00 

1 = Zdjir. 

j=1 

We shall call the number 0 a 6-beta-number (respectively a simple 6-beta-number) 
if the sequence d is eventually periodic (respectively finite). The most natural cases 
to consider are of course 6 = 0 (the traditional beta-numbers) and 6 = 1/2 (the 
analogues where one takes the nearest integer rather than the integer part). 

Notice that if d = ... dkdk+l ... dk+m, then 1/0 is a root of 

00 k k+m 

1 Edjzi = 1-Zdjzj-(1-zm)-l S i 
j=l j=l j=k+l 

and so an algebraic integer, all of whose conjugates 1/A with JAI > 1 must also be 
roots of 

00 00 

1-E djZj = (1-Oz) 1 + E TS (1, l )zj) 
j=l j=l 

and hence roots of power series with coefficients To (1, 8) in [-6, 1 - ). Thus for 
6 = 1/2 the value of r1/2(4) illustrated in Figure 1 yields a bound JAI < rl/2(0)-l 
for any conjugates A of a 1/2-beta-number having argument q5. Solomyak [3] has 
shown for 6 = 0 that the set of zeroes of [0, 1]-power series is in fact exactly the 
closure of the set of reciprocals of the conjugates of the standard beta-numbers. It 
is not clear to what extent this remains true for these more general pseudo-beta- 
numbers. However we still certainly obtain upper bounds on the conjugates from 
studying the roots of power series with appropriately restricted coefficients: 

Theorem 6. If A is a conjugate of a 6-beta-number, with 0 < 6 < 1, then 

1?+ if 1/2<8<1, 
''j<l 2(1-6+ 5+26+?62) if ?<6<1/2. 

Further, this inequality is best possible for 0 < 6 < 1/2. 
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7. THE PROOFS 

Proof of Theorem 1. The lower bound is trivial: 
If oa is a root of a series in Y9 then 

1 00 00kgla 
Zaicei 

For the upper bound we show that for any angle Nb there is a power series in g9 
with a root at (g + I)-1/2e'O. 

For a given argument qb in [0, 7r/2] we define 

a= (4) := arccos( cos ) 
cosq 

and set 
00 

hg(z I :=1-9 E cos(ja)zJ E 9g. 
j=1 

Now for zl < 1 we can write 

hs(Zi) = 1-2 ((ze)i ? (ze)i) - (1 + g)z2 - (2 + g)(cosa)z +1 9 2 ~~~~~~~z2- 2(cos a)z?+1 

and hg(z, q) plainly has the required zero at z = (1 + g)-1/2e'O. 
To see that the upper bound cannot be improved at 7r/2 observe that vanishing 

of the real part of a series in Yg at ir amounts to r being a root of a power series 
f (Z2) with f in g9. D 

We postpone the proof of Theorem 2 until after the proof of Theorem 4. Theorem 
3 is a special case of Theorem 4. 

Proof of Theorem 4. We first show that such a configuration of coefficients would 
lead to the extremal rs(4): 

If a = reiO is a root of gc(z) = 1 EnSai zn, then separating real and 
imaginary parts, we have 

1 + ? a , cos(nio)rn* = 0, > an sin(ni4)rn* = 0. 
n* EEs n*iEEs 

For sin 0 7& 0 we set 
So:= {j: nj = 0(mod 7r)} 

and use the second equation to eliminate any aj, j E So, from the first; 

1? a1 sin( - ni4)n 
Eios 

sin O 

Clearly then if 

Ti = {i : niq-0 E (0, 7r)}, T2 = {i : ni -0 E (-7r, 1)j 

r can be no smaller than the smallest positive real root of 

1-E Vi sinl(O-ni ) |xni_ E |.i (io)xni = ) 
iET1 

si 
oniET2 

snJ 
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and that this is plainly achieved for a configuration of the type given in the state- 
ment of the theorem and for no other. Here Joi = 0(mod 7r). 

It remains tq show that the extremal polynomial achieves this form (this is in 
fact already clear if there is an nI e SJ with an, 74 uI or vI; since if there was 
an anL, nL 0 SJ, not in the claimed optimal position we could perturb anL very 
slightly to reduce r at the cost of a new anI still within the required interval). 

We shall need a couple of lemmas: 

Lemma 1. We suppose that g(x) = 1 + En> , a in Ys is a power series with 
a root at w = re'O with r minimal, then g(x) has at least one non-zero coefficient 
at an endpoint ai = u- or vi. 

Proof. Suppose that g(x) has all its non-zero ai in (ui, vi). Note that g(x) cannot 
be a polynomial; otherwise for some suitably small A > 1, g(Az) would still be 
in Fs contradicting the minimality of the root. If g(x) has infinitely many terms 
we let a,, aj denote the first non-zero coefficients with sin(n - nj)O 4 0. Such 
coefficients must exist, since if sin(ni - nj)o = 0 for all the non-zero ai, aj then (for 
the real part of f to vanish) cos = +1 for all i and we can construct a power 
series 

g(x) := 1 ? E uix * + E vix* 
cosnji=1 cos nio=-1 

with a smaller root. 
Hence for any u= ReiA setting 

Rsin(A - njq$) Rs in(n1qo - A) 
,3I (u) = * _, pj (U) = 

rnI, sin(n, - nj)( rnJ sin(n1 - nj)/ 

we have 
13Wn-W + 3JWnr = U. 

In particular we can take 
00 

-u := E aiw* 
i=N 

with N so large that the corresponding !j (u) < min{aj - uj, vj - aj} for j = I, J 
and 

g(x) := E a%x ? + (aI + OI3)xn- + (aJ +? 3j)xnj 
i<N,i#I,J 

is now a polynomial in Fs with a root at w and all its non-zero coefficients in 
(ui, vi) (in contradiction to the above). D 

Lemma 2. We suppose that f (x) = 1 +Eni , aiXni in Fs is a power series with 
a root at the minimal w = red. 

(i) If 0/27r = r/s is rational, then 

_ ui if nr = js for some j, 
vi if nr = js + s/2 for some j if s is even. 

(ii) If aj E (uj, vj), then 

vi if (ni - nj)4 e (0, 7r) and nrij E (0, 7r) 

a- o or (ni - nj)4 E (-7r, 0) and nj4 E (-7r, 0) (mod 27r), 
= ui if (ni-nj)q E (-7r, 0) and nij e (0, 7r) 

or (ni - nj)4 E (0, 7r) and nj4 E (-7r, 0) (mod 27r). 
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(iii) If aj= vj, then 

{ vi if ni E (nij,7r) and njq E (O,7r) 
a J or nio E (-7r, n j) and njib E (-7r, O) (mod 27r), 

ui if nir E (-njNb,O) and njb E (0,7r) 
or nio E (0, -njb) and nj4i E (-7r, 0) (mod 27r). 

(iv) If aj =uj, then 

I vi if niq E (-7r, njq-7r) and njb E (O, 7r) 
or nio E (-n jb, 7r) and n j E (-7r, 0) (mod 27r), 

ai = Ui if nir E (0, nj4) and nj4 E (0, 7r) 

or nio E (njb, 0) and nrij E (-7r, 0) (mod 27r). 

Proof. (i) If there exists an nI = js with a, 74 uI, then there is a small positive 6, 
0 < 6 < (a, - ui)rn', such that 

g(x) := 1 + (1 - )aixni + ((1 - 6)aI - r-n- )XnI 

niGE~S\{rn1} 

is a series in Fs vanishing at ae but with all its non-zero coefficients ai strictly inside 
the intervals (ui, vi) in contradiction to Lemma 1. 

Similarly if there is an nr = js + s/2 with a, 7 VI , then for 0 < 6 < (vI - ai)r n 

we form 

i(x) = I + (I - )ai Xn + ((I1- )aI + 6r -n,X- 

niEcS\{rnI} 

(ii)-(iv) Given two I, J with (nr - nr)j ) 7rZ it is readily seen that there exist 

1 sin njb 1 sin niN 
rnI' sin(ni - nj) J rnj sin(ni -nj) 

such that 
a W n + aJWnj = 1 

Hence for any 0 < 6 < 1 the series 

g(Z) := I: (1 - 8)aiz 
Zn + ((1 - 6)aI - a)Zn_I + ((1 - 6)aj -_6J)ZnJ 

niCES\{rnI ,njJ} 

will certainly have a root at a and we shall gain the by now familiar contradiction 
to Lemma 1 if (for a suitably small positive 8) we can make an adjustment that 
puts 

((1 - 6)aI -_ 8a)zn_I E (UI,VI), ((1 - 6)aj - 6aj)Znj E (Uj, VJ). 

That is, if aj E (Uj, vj), or if aj = Vj and axj > 0, or if aj = Uj and axj <0O we 
cannot have 

a, > O and aI y- uI or aI < O and aI, VI. 

The rest is just a matter of checking the signs of sin njo,i sin nTt/ and 
sin(ni - nj)0. D 

Theorem 4 readily follows from the latter lemma with the angle 0 marking the 
line of transition from angles njr with aj = uj and those with aj = vj. E] 
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Proof of Theorem 2. From the inequality 

sinmb eim( -eim(! rmn- 

sin e' e-io | j=o K 

for b in (0, 7r/2), it is clear that any real root 0 < r < 1 of 

(2) 1-g sin(i -)o | =0 
i=2 

si 

must satisfy 
00 

si i- )0 r 

E sin 0 l<g(i-1)r - (I -r) 

and hence 

(3) r> 

Now if J(Q) = 1 (that is one can take 0 = Nb in Theorem 3) then, setting 
the coefficients of the extremal series to satisfy Ai :=-g sign(sin(1 - i)O/ sin q) 
for (i - l)ob V 0 (mod ir) and, in the manner of the proof of Theorem 4, using 
the vanishing of the real and imaginary parts of the power series to eliminate the 
remaining coefficients, we obtain an equation of the form (2) and r = r9(b). If 
J(Q) 7& 1, then r still provides a lower bound for r9 (b) (since, by Theorem 4, r 
becomes extremal if we weaken the problem by allowing the coefficient A1 to lie in 
some suitably larger interval). 

To show that J(4) = 1 when g > 2XV + 3 it remains only to check that the value 
of the missing coefficient A1 required to cause vanishing of the power series at reio 
satisfies IA1 < g. Using the vanishing of the imaginary part of the power series 
(arbitrarily assigning values IAiI < g for any i > 1 with (i - )b 0 (mod 7r)) and 
(2) we have 

Ar'sinio 0 sinio ii 
r sin | g E sinq 2 

i=2 i=2 

for g > X2 + 1. 
It is easy to check that z = 1/(v/g + 1) is a double root of 

1 - (2fg- + 1)z + z ( )I ) 

and from the form of the series it must actually be the smallest double root (see 
Theorem 4 of [1]). 

Proof of Proposition 2. Recall that for an angle 0 we have J(0) = J iff the root 
r=r(0,J), 0 <r <1, of 

1-g E xi 
=(s JO ) 
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gives 
00 

sin(J -i)O siniO * 
AJ(0) . sign ( sin J )i JO 

in [-g,g]. 
Now if 0b/27r is irrational and IAi(b) < g, then we can take 0 sufficiently close 

to 0b that 

sign ( J i )O = sign sin(Jq-i)$ 

for all j < N, with N sufficiently large that r(0) is also close enough to r(4) that 
Ai(0) Aj(q) still satisfies IAi(0) < g. 

If 0b/27r = t/s rational (with 1 = s or s/2 as s is odd or even) and 0 > 0b 
(respectively 0 < b) we set 

J, = J + ml (respectively Ji = J + nl). 

Oberve that for 0 sufficiently close to 0b we still have r(0) r(Q) and 

sign (sin (J 0- ) = sign (sin(Jl- -i)4) j < N, j # J(mod 1), 

while for j = J + il < N we have 

sign (sin(Ji - j)0 sin(j0) -sign(sin Jb) sin JO, i < m (resp. i > n), 
sin J1 0 sign(sin JO) sin JO, i > m (resp. i< n). 

Hence we obtain 

Ai_ (1- rlm -r1(M+1)\ 

I - ri AJ1 (O)r' - g sign(sin JO) r ) 

(respectively 

I - r) Ai, (0)rn' + g sign(sin JO>) 1 1 -r ) 

with Ai1 (0) safely inside (-g, g) when Aj(q) lies in the stated range and 0 is 
sufficiently close to q$. 

Properties (a), (b) follow from a similar appeal to continuity. 

Proof of Theorem 5. Given two arguments Wl, W2 in (0, 7r) we let 

S(W1,W2) i=J: j =-w1 or 2i'k =W2> 

Hence if f = 1 + E? 1 aix' in Fg vanishes at r and re'O we can use the equations 

00 00 00 

1 + E air' = 0, 1 + ai cos(i4)r' = 0, E ai sin(i4i)ri = 0 
i=l i=l1= 
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to eliminate any terms aj with j in S(Wl, W2) obtaining 

1? ~~ a~ (sin(wl - jo) sin(W2 - ) 1~~~~ + E a(i( -2 j?)sn&22 j?) ri = 0. 
jXS(wi ,W2) sin wi sinW2 

Hence r can be no smaller than the real root of 

1 - g z sin(w, - 'ji) sin(W2 - ?b) j 

jXS(wi ,w2) Sinmw1 sinW2 

achieved for a configuration 

tsin(w, -'jo) sin()2 -2?) 
aj =-g sign ( s 

sin w, sin W2J 

of the type given in the lemma (with 01 = 2w1,02 = 2W2) and no other. 
It remains to show that the series fr for r = fg(q) must be of this form. A slight 

adjustment in Lemma 1 shows that an extremal series fr must always contain at 
least one aj = +g. 

The following variant of Lemma 2 then completes the proof (with 01 and 02 
marking the point in the arguments jq (mod 27r) where aj first changes from 
negative to positive and from positive to negative respectively). O 

Lemma 3. Suppose jil, j2 are two integers such that 1 j, -=A1 (mod 7r) and Uj2$ 
-A2 (mod 7) satisfy 0 < A1 < A2 < 7r. 

(i) If 0/27r = r/s is rational, then aj = -g for j 0 (mod s). 
(ii) If ah2 7 -g and aj, & -g, then 

aj = g for jqc E (A I,A2) U (Al + r, A2 + r) (mod 27r). 2 

(iii) If ah2 & -g and aj, 7& g, then 

1 
a3 = -g for -jq E (0, A1) U (7r, A1 + 7r) (mod 27r). 

2 

(iv) If a32 7 g and aj, 7 -g, then 

1 
a3 =g for -jb E (A2, 7r) U (A2 + r, 2r) (mod 27r). 

2 

The proof is similar to that of Lemma 2 and relies on our ability (given any three 
exponents n = (n, m, r)), to construct a real polynomial 

p(x n): ( sin 2 m? sin -' ro x) n 

(sin xn,-)m)sin (n - r)( r 
- 2' 

sin ' mn sin 2 rq x m ( 

? sin 1 (n - $r ( sin T (-r)) (rD 
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which takes the value 1 at x = r and x = reiO. If an aj with 'jq in the given 
interval did not take the stated value, then for a sufficiently small 6 we could perturb 
the supposed extremal power series fr 

fr(X) = 1 + (1- 6)(fr(X) - 1) -Pp(x; j,j2, j) 

to obtain a new extremal series vanishing at r and re'O but no coefficient &j = zg 
contradicting the minimality of r. D 

Proof of Theorem 6. Observing that any root a of a power series with coefficients 
ai in [-8,1 - 8] (and hence ai - (1/2 - 8)1 < 1/2) satisfies 

|1+(12- a 2 1 al 
we obtain 

1? if 1/2<6<1, 

IaI\ l(I - 6+ /5+26+862) if 0<6<1/2 

(with equality achieved for the series 
0.0 0.0 0.0 

1 EZi) I + (I 6 ) EX2i-I _ 6EX2i 
i=1 i=1 i=1 

respectively). This then gives an upper bound on JAI for any conjugates A of a 
8-beta-number, 0 < 6 < 1. For 0 < 6 < 1/2 we show that this latter bound is best 
possible: 

For large integers k, N and M EN we take 0 > 1 to be the real root of 

k k-1 

f := z2k+1 - Nz2k - (N - M) E Z2i-1 + M E z2i 
i=1 i=O 

Writing 
k k 

0 = N + (N-M) 0-(2i-1) _ ME 0-2i 
i=1 i=1 

and observing that (for large enough N) 

-80 < 3 ((N- M)0-2i - M0-(2i+l)) < (1 - 6)0, 
i=o 

-0 -M + ((N - M)0-(2i-1) _ Mo-2i) < (1 - 8)0 

i=1 

for 0 < j < k - 1, it is not hard to see that 0 has a finite expansion d = N, 
N - M, -M, .. ., N - M, -M, o, ... and hence is a simple 8-beta-number. 

If N and M are chosen to have a prime p with pIN, M but p2 IN, M, then f is 
irreducible (by Eisenstein's criterion) and it is not hard to see that as N, k -* oo, 
with M/N -* 6 the polynomial f must have a root 1/A with 

A2 )_(25+2 +2(1 - 8)(I -)) 
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FIGURE 1. rg(Q) against q5/r for g = 1/2. 
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FIGURE 2. rg(q) against q/7r for 9 = 1. 
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FIGURE 3. rg(q) against q/ir for g - 31/2 
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FIGURE 4. rgQ/) against q/7r for g = 23/2 + 3. 
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FIGURE 5. J(O) against q/7r for g = 1. 
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FIGURE 6. Aj(,k) against 0b/7r for g= 1. 
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FIGURE 7. ri(q) against q/7r for I = [0,1]. 
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FIGURE 8. ri(o) against 0/7r for I = [-1,0 ]. 
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FIGURE 9. irg(o) against q/ir for g=1. 
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FIGURE 10. I, J against q/ir for g = 1. 
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FIGURE 11. f'(j) against q/ir for I = [0, 1]. 
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FIGURE 12. fI (q) against q/ir for I = [-1, 0]. 
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